181 resultados para Pressure plate

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a 'high-lift' and an 'ultra high-lift' turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in 'ultra high-lift' design when compared to the 'high-lift' design. Stronger 'Klebanoff streaks' are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The 'part-span' Kelvin-Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging. © 2013 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador: