206 resultados para Pressure coefficient
em Cambridge University Engineering Department Publications Database
Resumo:
Failure of retaining walls is observed after many recent seismic events. Design of these walls are based on the pseudo-static force designs based on the Mononobe-Okabe earth pressure coefficient equations. However, it is clear that there are limitations attached with this approach. This paper investigates the seismic behaviour of sheet pile retaining walls using dynamic centrifuge testing facilities. In addition to using bending moment strain gauges on the wall, new generation earth pressure cells have also been used to investigate the generation of active and passive earth pressures. The results indicate that Mononobe-Okabe equations give relatively good estimates of active earth pressures but may be over-predicting passive earth pressures at certain peak ground acceleration levels. Based on this series of centrifuge tests it is concluded that earth pressure cells are successful in providing good qualitative data, but need to be supplemented by good calibration methods. © 2010 Taylor & Francis Group, London.
Resumo:
A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.
Resumo:
A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.
Resumo:
Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3 × 10 5 based on exit velocity and chord. Three different tip geometries were investigated: a flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualisation computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualisation and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design. copyright © 2005 by ASME.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
Saturated sands particularly at low relative density commonly exhibit rises in excess pore pressure when subjected to earthquake loading. The excess pore pressure can approach a maximum value, limited by the initial vertical effective stress. After the completion of earthquake shaking, these excess pore pressures dissipate according to the consolidation equation, which can be solved to produce a Fourier series solution. It will be shown by manipulation of this Fourier series that excess pore pressure traces provide a method for back-calculation of coefficient of consolidation Cv. This method is validated against dissipation curves generated using known values of C v and seen to be more accurate in the middle of the layer. The method is then applied to data recorded in centrifuge tests to evaluate Cv throughout the reconsolidation process following liquefaction conditions. C v is seen to fit better as a function of excess pore pressure ratio than effective stress for the stress levels considered. For the soil investigated, Cv is about three times smaller at excess pore pressure ratio of 0.9 compared to excess pore pressure ratio of 0. Copyright © 1996-2011 ASTM.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the earliest possible opportunity. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper presents an analytical mean-line design study for a repeating-stage, axial-flow Low Pressure (LP) turbine. The problem of how to measure blade loading is first addressed. The analysis demonstrates that the Zweifel coefficient [1] is not a reasonable gauge of blade loading because it inherently depends on the flow angles. A more appropriate coefficient based on blade circulation is proposed. Without a large set of turbine test data it is not possible to directly evaluate the accuracy of a particular loss correlation. The analysis therefore focuses on the efficiency trends with respect to flow coefficient, stage loading, lift coefficient and Reynolds number. Of the various loss correlations examined, those based on Ainley and Mathieson ([2], [3], [4]) do not produce realistic trends. The profile loss model of Coull and Hodson [5] and the secondary loss models of Craig and Cox [6] and Traupel [7] gave the most reasonable results. The analysis suggests that designs with the highest flow turning are the least sensitive to increases in blade loading. The increase in Reynolds number lapse with loading is also captured, achieving reasonable agreement with experiments. Copyright © 2011 by ASME.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.
Resumo:
Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.