18 resultados para Practice Development, Staff Development
em Cambridge University Engineering Department Publications Database
Resumo:
This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.
Resumo:
Methods for determining cost-effectiveness of different treatments are well established, unlike appraisal of non-drug interventions, including novel diagnostics and biomarkers.
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering this course to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students on this professional practice have often extensive experience as practising engineers and scientists, they have learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The course offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the course and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers.
Resumo:
This paper aims to elucidate practitioners' understanding and implementation of Lean in Product Development (LPD). We report on a workshop held in the UK during 2012. Managers and engineers from four organizations discussed their understanding of LPD and their ideas and practice regarding management and assessment of value and waste. The study resulted in a set of insights into current practice and lean thinking from the industry perspective. Building on this, the paper introduces a balanced value and waste model that can be used by practitioners as a checklist to identify issues that need to be considered when applying LPD. The main results indicate that organizations tend to focus on waste elimination rather than value enhancement in LPD. Moreover, the lean metrics that were discussed by the workshop participants do not link the strategic level with the operational one, and poorly reflect the value and waste generated in the process. Future directions for research are explored, and include the importance of a balanced approach considering both value and waste when applying LPD, and the need to link lean metrics with value and waste levels.
Resumo:
The complex, fragmented and diverse aspects of a sustainable development perspective are translated into an eight-point framework that defines a problem boundary larger than that traditionally adopted by civil engineers. This leads to practical questions intended to inform engineers who ask 'am I being sustainable?' during project implementation. The value of the questions is tested against a case history of a wastewater treatment project. This demonstrates the relevance of the questions to successive project delivery phases of defining the problem, choosing a solution and implementing that solution through design, construction and operation. The case history highlights that answers to several of the additional questions raised by considering this wider problem space are currently buried within government and clients' policies, regulations and standard practice; these answers may not be accessible to the professional engineer.
Resumo:
This paper reports some results from a major research project on the integration of environmental issues into design in the electrical and electronic industry. Product development practice and ecodesign methods were examined along with qualitative data from 19 manufacturers, using interviews and an action research methodology. A four-stage framework for ecodesign practice resulted: first, to make an environmental assessment from a life cycle viewpoint; then to communicate the analysis and collect feedback; thirdly to prioritize the environmental issues and finally to complete the design using relevant tools and methods. This 'ARPI' framework (analyse, report, prioritize, improve) applies to both strategic and operational levels. Initial testing of the framework in collaborating companies highlighted difficulties with communication with design teams; the role of 'ecodesign champions' is explained. Other challenges are the development of customized tools and the training of designers. The study concludes that the prioritization step is critical, as it simplifies and clarifies the tasks in design that take place after formulation of the specification. Copyright (C) 2000 John Wiley and Sons, Ltd. and ERP Environment.
Resumo:
Purpose: The paper examines how a number of key themes are introduced in the Masters programme in Engineering for Sustainable Development at Cambridge University through student centred activities. These themes include dealing with complexity, uncertainty, change, other disciplines, people, environmental limits, whole life costs, and trade-offs. Design/methodology/approach: The range of exercises and assignments designed to encourage students to test their own assumptions and abilities to develop competencies in these areas are analysed by mapping the key themes onto the formal activities which all students undertake throughout the core MPhil programme. The paper reviews the range of these activities that are designed to help support the formal delivery of the taught programme. These include residential field courses, role plays, change challenges, games, systems thinking, multi criteria decision making, awareness of literature from other disciplines and consultancy projects. An axial coding approach to the analysis of routine feedback questionnaires drawn from recent years has been used to identify how student’s own awareness develops. Also results of two surveys are presented which tests the students’ perceptions about whether or not the course is providing learning environments to develop awareness and skills in these areas. Findings: Students generally perform well against these tasks with a significant feature being the mutual support they give to each other in their learning. The paper concludes that for students from an engineering background it is an holistic approach to delivering a new way of thinking through a combination of lectures, class activities, assignments, interactions between class members, and access to material elsewhere in the University that enables participants to develop their skills in each of the key themes. Originality /value: The paper provides a reflection on different pedagogical approaches to exploring key sustainable themes and reports students own perceptions of the value of these kinds of activities. Experiences are shared of running a range of diverse learning activities within a professional practice Masters programme.
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. They also must understand how to implement change in the organisations within which they will work. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering a special module to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students who embark on this professional practice have often extensive experience as practising engineers and scientists, many have already learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The programme offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the programme and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers. Copyright © 2012 September.