31 resultados para Power law

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

YBaCuO-coated conductors offer great potential in terms of performance and cost-saving for superconducting fault current limiter (SFCL). A resistive SFCL based on coated conductors can be made from several tapes connected in parallel or in series. Ideally, the current and voltage are shared uniformly by the tapes when quench occurs. However, due to the non-uniformity of property of the tapes and the relative positions of the tapes, the currents and the voltages of the tapes are different. In this paper, a numerical model is developed to investigate the current and voltage sharing problem for the resistive SFCL. This model is able to simulate the dynamic response of YBCO tapes in normal and quench conditions. Firstly, four tapes with different Jc 's and n values in E-J power law are connected in parallel to carry the fault current. The model demonstrates how the currents are distributed among the four tapes. These four tapes are then connected in series to withstand the line voltage. In this case, the model investigates the voltage sharing between the tapes. Several factors that would affect the process of quenches are discussed including the field dependency of Jc, the magnetic coupling between the tapes and the relative positions of the tapes. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large database of 115 triaxial, direct simple shear, and cyclic tests on 19 clays and silts is presented and analysed to develop an empirical framework for the prediction of the mobilization of the undrained shear strength, cu, of natural clays tested from an initially isotropic state of stress. The strain at half the peak undrained strength (γM=2) is used to normalize the shear strain data between mobilized strengths of 0.2cu and 0.8cu. A power law with an exponent of 0.6 is found to describe all the normalized data within a strain factor of 1.75 when a representative sample provides a value for γM=2. Multi-linear regression analysis shows that γM=2 is a function of cu, plasticity index Ip, and initial mean effective stress p′0. Of the 97 stress-strain curves for which cu, Ip, and p′0 were available, the observed values of γM=2 fell within a factor of three of the regression; this additional uncertainty should be acknowledged if a designer wished to limit immediate foundation settlements on the basis of an undrained strength profile and the plasticity index of the clay. The influence of stress history is also discussed. The application of these stress-strain relations to serviceability design calculations is portrayed through a worked example. The implications for geotechnical decision-making and codes of practice are considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kolmogorov's two-thirds, ((Δv) 2) ∼ e 2/ 3r 2/ 3, and five-thirds, E ∼ e 2/ 3k -5/ 3, laws are formally equivalent in the limit of vanishing viscosity, v → 0. However, for most Reynolds numbers encountered in laboratory scale experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. By creating artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled, we show why this is the case. The energy of eddies of scale, s, is shown to vary as s 2/ 3, in accordance with Kolmogorov's 1941 law, and we vary the range of scales, γ = s max/s min, in any one realisation from γ = 25 to γ = 800. This is equivalent to varying the Reynolds number in an experiment from R λ = 60 to R λ = 600. While there is some evidence of a five-thirds law for g > 50 (R λ > 100), the two-thirds law only starts to become apparent when g approaches 200 (R λ ∼ 240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, ((Δv) 2) takes the form of a mixed power-law, a 1+a 2r 2+a 3r 2/ 3, where a 2r 2 tracks the variation in enstrophy and a 3r 2/ 3 the variation in energy. These findings are shown to be consistent with experimental data where the polution of the r 2/ 3 law by the enstrophy contribution, a 2r 2, is clearly evident. We show that higherorder structure functions (of even order) suffer from a similar deficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A temperature-dependent mobility model in amorphous oxide semiconductor (AOS) thin film transistors (TFTs) extracted from measurements of source-drain terminal currents at different gate voltages and temperatures is presented. At low gate voltages, trap-limited conduction prevails for a broad range of temperatures, whereas variable range hopping becomes dominant at lower temperatures. At high gate voltages and for all temperatures, percolation conduction comes into the picture. In all cases, the temperature-dependent mobility model obeys a universal power law as a function of gate voltage. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element model for a YBCO pancake coil with a magnetic substrate is developed in this paper. An axial symmetrical H formulation and the E-J power law are used to construct the model, with the magnetic substrate considered by introducing an extra time-dependent term in the formula. A pancake coil is made and tested. The measurement of critical current and transport loss is compared to the model result, showing good consistency. The influence of magnetic substrate in the condition of AC and DC current is studied. The AC loss decreases without a magnetic substrate. It is observed that when the applied DC current approaches the critical current the coil turn loss profile changes completely in the presence of magnetic substrate due to the change of magnetic field distribution. © 2012 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the results of electrical resistivity measurements carried out on well-sintered La0.7Ca0.3MnO3 / Mn3O4 composite samples with almost constant composition of the magnetoresistive manganite phase (La0.7Ca0.3MnO3). A percolation threshold (fc) occurs when the La0.7Ca0.3MnO3 volume fraction is ~ 0.19. The dependence of the electrical resistivity as a function of La0.7Ca0.3MnO3 volume fraction (fLCMO) can be described by percolation-like phenomenological equations. Fitting the conducting regime (fLCMO > fc) by the percolation power law returns a critical exponent t value of 2.0 +/- 0.2 at room temperature and 2.6 +/-0.2 at 5 K. The increase of t is ascribed to the influence of the grain boundaries on the electrical conduction process at low temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.