54 resultados para Postural Changes
em Cambridge University Engineering Department Publications Database
Measurement of stressful postures during daily activities: An observational study with older people.
Resumo:
This study measured the postures of older people during cooking and laundry. A sample of men and women aged 75+ years (n=27) was recruited and observed in a home-like environment. Postures were recorded with a measurement system in an objective and detailed manner. The participants were videotaped to be able to see where 'critical' postures occurred, as defined by a trunk inclination of ≥60°. Analysis of data was facilitated by specially developed software. Critical postures accounted for 3% of cooking and 10% of laundry, occurring primarily during retrieving from and putting in lower cabinets, the refrigerator, laundry basket or washing machine as well as disposing into the waste bin. These tasks involve a great variation in postural changes and pose a particular risk to older people. The results suggest that the use of stressful postures may decrease efficiency and increase fatigue, eventually leading to difficulties with daily activities. The specific tasks identified during which critical postures occurred should be targeted by designers in order to improve the activities. A few examples are given of how better design can reduce or eliminate some of the postural constraints.
Resumo:
Drosophila germ-band extension (GBE) is an example of the convergence and extension movements that elongate and narrow embryonic tissues. To understand the collective cell behaviours underlying tissue morphogenesis, we have continuously quantified cell intercalation and cell shape change during GBE. We show that the fast, early phase of GBE depends on cell shape change in addition to cell intercalation. In antero-posterior patterning mutants such as those for the gap gene Krüppel, defective polarized cell intercalation is compensated for by an increase in antero-posterior cell elongation, such that the initial rate of extension remains the same. Spatio-temporal patterns of cell behaviours indicate that an antero-posterior tensile force deforms the germ band, causing the cells to change shape passively. The rate of antero-posterior cell elongation is reduced in twist mutant embryos, which lack mesoderm. We propose that cell shape change contributing to germ-band extension is a passive response to mechanical forces caused by the invaginating mesoderm.