4 resultados para Post-performance discussions

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ densification is a popular technique to protect shallow foundations from the effects of earthquake-induced liquefaction, current design being based on semiempirical rules. Poor understanding of the mechanisms governing the performance of soil-structure systems during and after earthquakes inhibits the use of narrow densified zones, which could contribute to optimise the use of densification if the increase in post-earthquake settlement is restrained. Therefore this paper investigates the long-term behaviour of a footing built on densified ground and surrounded by liquefiable ground, centrifuge experiments being used to identify the mechanisms occurring in the ground during and after a seismic simulation. The differential excess pore pressure generated in the ground during the shaking and the processes of vertical stress concentration and subsequent redistribution observed under the footing dominate the system behaviour. The results enlighten the complex mechanisms determining the post-earthquake settlement when densification is carried out to mitigate liquefaction effects. The improvement in performance resulting from widening the zone of densification is rationally explained which encourages the development of new design concepts that may enhance the future use of densification as a liquefaction resistance measure. © 2007 Thomas Telford Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.