4 resultados para Post use
em Cambridge University Engineering Department Publications Database
Resumo:
In situ densification is a popular technique to protect shallow foundations from the effects of earthquake-induced liquefaction, current design being based on semiempirical rules. Poor understanding of the mechanisms governing the performance of soil-structure systems during and after earthquakes inhibits the use of narrow densified zones, which could contribute to optimise the use of densification if the increase in post-earthquake settlement is restrained. Therefore this paper investigates the long-term behaviour of a footing built on densified ground and surrounded by liquefiable ground, centrifuge experiments being used to identify the mechanisms occurring in the ground during and after a seismic simulation. The differential excess pore pressure generated in the ground during the shaking and the processes of vertical stress concentration and subsequent redistribution observed under the footing dominate the system behaviour. The results enlighten the complex mechanisms determining the post-earthquake settlement when densification is carried out to mitigate liquefaction effects. The improvement in performance resulting from widening the zone of densification is rationally explained which encourages the development of new design concepts that may enhance the future use of densification as a liquefaction resistance measure. © 2007 Thomas Telford Ltd.
Resumo:
The operation on how high quality single-mode operation can be readily attained on etching circles in multimode devices is discussed. Arrays of such spots can also be envisaged. Control of the polarization state is also achieved by use of deep line etches. The output filaments and beam shapes of the conventional multimode vertical cavity surface emitting lasers (VCSEL) is shown to be engineered in terms of their positions, widths, and polarizations by use of focused ion beam etching (FIBE). Several GaAs quantum well top-emitting devices with cavity diameters of 10 μm and 18 μm were investigated.
Resumo:
Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.