10 resultados para Portuguese language Foreign words and phrases African

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method for text entry based on inverse arithmetic coding that relies on gaze direction and which is faster and more accurate than using an on-screen keyboard. These benefits are derived from two innovations: the writing task is matched to the capabilities of the eye, and a language model is used to make predictable words and phrases easier to write.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new online psycholinguistic resource for Greek based on analyses of written corpora combined with text processing technologies developed at the Institute for Language & Speech Processing (ILSP), Greece. The "ILSP PsychoLinguistic Resource" (IPLR) is a freely accessible service via a dedicated web page, at http://speech.ilsp.gr/iplr. IPLR provides analyses of user-submitted letter strings (words and nonwords) as well as frequency tables for important units and conditions such as syllables, bigrams, and neighbors, calculated over two word lists based on printed text corpora and their phonetic transcription. Online tools allow retrieval of words matching user-specified orthographic or phonetic patterns. All results and processing code (in the Python programming language) are freely available for noncommercial educational or research use. © 2010 Springer Science+Business Media B.V.