67 resultados para Portland Cement Mortars

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the global stringent legislations regulating the wastes generated from the drilling process of oil exploration and production activities, the management of hazardous drill cuttings has become one of the pressing needs confronting the petroleum industry. Most of the prevalent treatment techniques adopted by oil companies are extremely expensive and/or the treated product has to be landfilled without any potential end-use; thereby rendering these solutions unsustainable. The technique of stabilisation/solidification is being investigated in this research to treat drill cuttings prior to landfilling or for potential re-use in construction products. Two case studies were explored namely North Sea and Red Sea. Given the known difficulties with stabilising/solidifying oils and chlorides, this research made use of model drill cutting mixes based on typical drill cutting from the two case studies, which contained 4.2% and 10.95% average concentrations of hydrocarbons; and 2.03% and 2.13% of chlorides, by weight respectively. A number of different binders, including a range of conventional viz. Portland cement (PC) as well as less-conventional viz. zeolite, or waste binders viz. cement kiln dust (CKD), fly ash and compost were tested to assess their ability to treat the North Sea and Red Sea model drill cuttings. The dry binder content by weight was 10%, 20% and 30%. In addition, raw drill cuttings from one of the North Sea offshore rigs were stabilised/solidified using 30% PC. The characteristics of the final stabilised/solidified product were finally compared to those of thermally treated cuttings. The effectiveness of the treatment using the different binder systems was compared in the light of the aforementioned two contaminants only. A set of physical tests (unconfined compressive strength (UCS)), chemical tests (NRA leachability) and micro-structural examinations (using scanning electron microscopy (SEM), and X-ray diffraction (XRD)) were used to evaluate the relative performance of the different binder mixes in treating the drill cuttings. The results showed that the observed UCS covered a wide range of values indicating various feasible end-use scenarios for the treated cuttings within the construction industry. The teachability results showed the reduction of the model drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the 30% and 20% binders for chloride concentrations, and (b) by the 20% and 30% of compost-PC and CKD-PC binders for the Red Sea cuttings. The 20% and 30% compost-PC and CKD-PC binders successfully reduced the leached oil concentration of the North Sea cuttings to inert levels. Copyright 2007, Society of Petroleum Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of porous blocks containing three different reactive magnesia-based cements - namely magnesia alone, magnesium oxide: Portland cement (PC) in 1:1 ratio, cured in ambient conditions, and magnesia alone, cured at elevated carbon dioxide conditions, in hydrochloric acid and magnesium sulfate solution - was investigated. Different aggressive chemical solution conditions were used, to which the samples were exposed for up to 12 months and then tested for strength and microstructure. The performance was also compared with that of standard PC-based blocks. The results showed the significant resistance to chemical attack offered by magnesia, both alone and with PC blend in the porous blocks when cured under ambient carbon dioxide conditions, and confirmed the much poorer performance of blocks made from PC alone. The blocks of solely magnesia cured in elevated carbon dioxide conditions, at 20% concentration, showed slightly lower resistance to acid attack than PC; however, the resistance to sulfate attack was much higher. © 2012 Thomas Telford Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work employed a clayey, silty, sandy gravel contaminated with a mixture of metals (Cd, Cu, Pb, Ni and Zn) and diesel. The contaminated soil was treated with 5 and 10% dosages of different cementitious binders. The binders include Portland cement, cement-fly ash, cement-slag and lime-slag mixtures. Monolithic leaching from the treated soils was evaluated over a 64-day period alongside granular leachability of 49- and 84-day old samples. Surface wash-off was the predominant leaching mechanism for monolithic samples. In this condition, with data from different binders and curing ages combined, granular leachability as a function of monolithic leaching generally followed degrees 4 and 6 polynomial functions. The only exception was for Cu, which followed the multistage dose-response model. The relationship between both leaching tests varied with the type of metal, curing age/residence time of monolithic samples in the leachant, and binder formulation. The results provide useful design information on the relationship between leachability of metals from monolithic forms of S/S treated soils and the ultimate leachability in the eventual breakdown of the stabilized/solidified soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the potential for carbonating reactive magnesia (MgO) to serve as a more sustainable soil stabilization method by providing rapid and significant strength development of the stabilized soil through absorbing substantial quantities of CO2. Gaseous CO2 was forced through laboratory-prepared reactive MgO-treated soil samples in a triaxial cell set-up, and their resulting mechanical and microstructural properties were investigated using unconfined compressive strength, X-ray diffraction, and scanning electron microscopy. The results showed that adequately carbonated MgO-treated soils could, in a few hours, reach a similar strength range to corresponding 28 day Portland cement (PC)-stabilized soils. Hydrated magnesium carbonates, namely nesquehonite and hydromagnesite-dypingite, were the main products of the carbonated MgO in the soil, and were responsible for the significant strength development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive magnesia (MgO) cements have emerged as a potentially more sustainable and technically superior alternative to Portland cement due to their lower production temperature and ability to sequester significant quantities of CO2. Porous blocks containing MgO were found to achieve higher strength values than PC blocks. A number of variables are investigated to achieve maximum carbonation and associated high strengths. This paper focuses on the impact of four different hydrated magnesium carbonates (HMCs) as cement replacements of either 20 or 50%. Accelerated carbonation (20 C, 70-90% RH, 20% CO2) is compared with natural curing (20 C, 60-70% RH, ambient CO2). SEM, TG/DTA, XRD, and HCl acid digestion are utilized to provide a thorough understanding of the performance of MgO-cement porous blocks. The presence of HMCs resulted in the formation of larger size carbonation products with a different morphology than those in the control mix, leading to significantly enhanced carbonation and strength. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the use of ground granulated blast furnace slag (GGBS) and reactive magnesia (MgO) blends for soil stabilization, comparing them with GGBS-lime blends and Portland cement (PC) for enhanced technical performance. A range of tests were conducted to investigate the properties of stabilized soils, including unconfined compressive strength (UCS), permeability, and microstructural analyses by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influence of GGBS:MgO ratio, binder content, soil type, and curing period were addressed. The UCS results revealed that GGBS-MgO was more efficient than GGBS-lime as a binder for soil stabilization, with an optimum MgO content in the range of 5-20% of the blends content, varying with binder content and curing age. The 28-day UCS values of the optimum GGBS-MgO mixes were up to almost four times higher than that of corresponding PC mixes. The microstructural analyses showed the hydrotalcite was produced during the GGBS hydration activated by MgO, although the main hydration products of the GGBS-MgO stabilized soils were similar to those of PC. © 2014 American Society of Civil Engineers.