22 resultados para Population acadienne

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of vibration data to identify damage in a population of cylindrical shells is assessed. Vibration data from a population of cylinders were measured and modal analysis was employed to obtain natural frequencies and mode shapes. The mode shapes were transformed into the Coordinate Modal Assurance Criterion (COMAC). The natural frequencies and the COMAC before and after damage for a population of structures show that modal analysis is a viable route to damage identification in a population of nominally identical cylinders. Modal energies, which are defined as the integrals of the real and imaginary components of the frequency response functions over various frequency ranges, were extracted and transformed into the Coordinate Modal Energy Assurance Criterion (COMEAC). The COMEAC before and after damage show that using modal energies is a viable approach to damage identification in a population of cylinders.