3 resultados para Plant production

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production responsiveness refers to the ability of a production system to achieve its operational goals in the presence of supplier, internal and customer disturbances, where disturbances are those sources of change which occur independently of the system's intentions. A set of audit tools for assessing the responsiveness of production operations is being prepared as part of an EPSRC funded investigation. These tools are based on the idea that the ability to respond is linked to: the nature of the disturbances or changes requiring a response; their impact on production goals; and the inherent response capabilities of the operation. These response capabilities include information gathering and processing (to detect disturbances and production conditions), decision processes (which initiate system responses to disturbances) and various types of process flexibilities and buffers (which provide the physical means of dealing with disturbances). The paper discusses concepts and issues associated with production responsiveness, describes the audit tools that have been developed and illustrates their use in the context of a steel manufacturing plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.