39 resultados para Piezoelectric polymer composites

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in functionality and reliability of nanocomposite materials require careful formulation of processing methods to ultimately realize the desired properties. An extensive study of how the variation in fabrication process would affect the mechanism of conductivity and thus the final electrical properties of the carbon nanotube-polymer composite is presented. Some of the most widely implemented procedures are addressed, such as ultrasonication, melt shear mixing, and addition of surfactants. It is hoped that this study could provide a systematic guide to selecting and designing the downstream processing of carbon nanocomposites. Finally, this guide is used to demonstrate the fabrication and performance of a stretchable (pliable) conductor that can reversibly undergo uniaxial strain of over 100%, and other key applications are discussed. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.