99 resultados para Photoluminescence emission

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10⁻¹⁶ cm⁻³s⁻¹. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural and optical properties of trench defects, which are poorly understood yet commonly occurring defects observed on the surfaces of InGaN multiple quantum wells (MQW), are reported. These defects comprise near-circular trenches which enclose areas of MQW which give rise to a red shift in peak photoluminescence emission and a change in cathodoluminescence intensity with respect to the surrounding material. Atomic force microscopy shows that the height of trench-enclosed areas differs from that of the surrounding quantum well structure, and that trenches are unrelated to the commonly observed V-defects in InGaN films, despite being occasionally intersected by them. Cross-sectional electron microscopy analysis of trenches with raised centres suggests that the red shift in the observed cathodoluminescence peak emission may be due to the quantum wells being thicker in the trench-enclosed regions than in the surrounding quantum well area. The mechanism of trench formation and its implication for the control of the emission properties of light-emitting diodes is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the enhancement of sub-bandgap photoluminescence from silicon via the Purcell effect. We couple the defect emission from silicon, which is believed to be due to hydrogen incorporation into the lattice, to a photonic crystal (PhC) nanocavity. We observe an up to 300-fold enhancement of the emission at room temperature at 1550 nm, as compared to an unpatterned sample, which is then comparable to the silicon band-edge emission. We discuss the possibility of enhancing this emission even further by introducing additional defects by ion implantation, or by treating the silicon PhC nanocavity with hydrogen plasma. © 2011 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H 25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material. (C) 2002 American Institute of Physics.