6 resultados para Photoinduced
em Cambridge University Engineering Department Publications Database
Resumo:
Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).
Resumo:
As these results indicate, photo-CVD coating is a robust process that allows for the creation of core-shell nanoparticles. In the present work we demonstrated that photo-CVD can effectively coat Fe2O3 particles with silica for purposes of biological applications. TDMA results combined with TEM images indicate that all particles are effectively coated and that particle coating thicknesses can be tuned to desired thickness depending on the application. In addition, the ability to vary coating properties and to coat high concentrations of particles makes this technique of interest for industrial production where uniform properties are needed for large quantities of particles [2]. Copyright © 2010 by ASME.
Resumo:
Chemical vapour deposition (CVD) grown graphene sheets were investigated using optical-pump terahertz-probe spectroscopy, revealing a dramatic variation in the photoinduced terahertz conductivity of graphene in different atmospheres. © 2012 IEEE.