8 resultados para Philipp I, der Grossmütige, landgrave of Hesse, 1504-1567.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A design methodology is presented for turbines in an annulus with high end wall angles. Such stages occur where large radial offsets between the stage inlet and stage outlet are required, for example in the first stage of modern low pressure turbines, and are becoming more prevalent as bypass ratios increase. The turbine vanes operate within s-shaped ducts which result in meridional curvature being of a similar magnitude to the bladeto-blade curvature. Through a systematic series of idealized computational cases, the importance of two aspects of vane design are shown. First, the region of peak end wall meridional curvature is best located within the vane row. Second, the vane should be leant so as to minimize spanwise variations in surface pressure-this condition is termed "ideal lean." This design philosophy is applied to the first stage of a low pressure turbine with high end wall angles. © 2014 by ASME.