16 resultados para Phenomenon of disinterest
em Cambridge University Engineering Department Publications Database
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
The phenomenon of tip leakage has been studied in two linear cascades of turbine blades. The investigation includes an examination of the performance of the cascades with a variety of tip geometries. The effects of using plain tips, suction side squealers, and pressure side squealers are reported. Traverses of the exit flow field were made in order to determine the overall performance. A method of calculating the tip discharge coefficients for squealer geometries is put forward. In linking the tip discharge coefficient and cascade losses, a procedure for predicting the relative performance of tip geometries is developed. The model is used to examine the results obtained using the different tip treatments and to highlight the important aspects of the loss generation process.
Resumo:
The interaction of wakes shed by a moving bladerow with a downstream bladerow causes unsteady flow. The meaning of the freestream stagnation pressure and stagnation enthalpy in these circumstances has been examined using simple analyses, measurements and CFD. The unsteady flow in question arises from the behaviour of the wakes as so-called negative-jets. The interactions of the negative-jets with the downstream blades lead to fluctuations in static pressure which in turn generate fluctuations in the stagnation pressure and stagnation enthalpy. It is shown that the fluctuations of the stagnation quantities created by unsteady effects within the bladerow are far greater than those within the incoming wake. The time-mean exit profiles of the stagnation pressure and stagnation enthalpy are affected by these large fluctuations. This phenomenon of energy separation is much more significant than the distortion of the time-mean exit profiles that is caused directly by the cross-passage transport associated with the negative-jet, as described by Kerrebrock and Mikolajczak. Finally, it is shown that if only time-averaged values of loss are required across a bladerow, it is nevertheless sufficient to determine the time-mean exit stagnation pressure.
Resumo:
Most tribological pairs carry their service load not just once but for a very large number of repeated cycles. During the early stages of this life, protective residual stresses may be developed in the near surface layers which enable loads which are of sufficient magnitude to cause initial plastic deformation to be accommodated purely elastically in the longer term. This is an example of the phenomenon of 'shakedown' and when its effects are incorporated into the design and operation schedule of machine components this process can lead to significant increases in specific loading duties or improvements in material utilization. Although the underlying principles can be demonstrated by reference to relatively simple stress systems, when a moving Hertzian pressure distribution in considered, which is the form of loading applicable to many contact problems, the situation is more complex. In the absence of exact solutions, bounding theorems, adopted from the theory of plasticity, can be used to generate appropriate load or shakedown limits so that shakedown maps can be drawn which delineate the boundaries between potentially safe and unsafe operating conditions. When the operating point of the contact lies outside the shakedown limit there will be an increment of plastic strain with each application of the load - these can accumulate leading eventually to either component failure or the loss of material by wear. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The phenomenon of fracturing in sand as a result of compensation grouting was studied. Processes of fracture initiation and propagation were explained and a parametric study was conducted in order to investigate the factors that cause sand fracturing to occur. Experimental results indicate that fracture initiation requires the existence of a local inhomogeneity around the injection position. Grout mixture in terms of water-cement ratio and fines content had major roles in sand fracturing, whereas injection rate had a minor influence under the tested conditions. © 2009 Taylor & Francis Group.
Resumo:
One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.
Resumo:
In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.
Resumo:
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet-target interface--this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet.
Resumo:
There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.
Resumo:
Plasticine strips are rolled between cylindrical rollers to model the phenomenon of material transfer in metal rolling. Strips of thin plastic film ('clingfilm') on the plasticine strip are used to model the oxide layer that covers the surface of aluminium. The effect of gaps opening up between the clingfilm strips is investigated. It is found that the percentage area of the exposed strip giving rise to transfer of material increases with the gap width. The evidence strongly suggests that plasticine particles transferred to the rolls are able to pick off plasticine from the strip on successive passes. Larger plasticine particles are more likely to show this behaviour and consequently grow in size. The results confirm the usefulness of plasticine as a suitable material to investigate transfer layer formation in metal rolling, and help inform development of experimental procedures to study the evolution of real metal transfer layers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, we examine the phenomenon of random lasing from the smectic A liquid crystal phase. We summarise our results to date on random lasing from the smectic A phase including the ability to control the output from the sample using applied electric fields. In addition, diffuse random lasing is demonstrated from the electrohydrodynamic instabilities of a smectic A liquid crystal phase that has been doped with a low concentration of ionic impurities. Using a siloxane-based liquid crystal doped with ionic impurities and a laser dye, nonresonant random laser emission is observed from the highly scattering texture of the smectic A phase which is stable in zero-field. With the application of a low frequency alternating current electric field, turbulence is induced due to motion of the ions. This is accompanied by a decrease in the emission linewidth and an increase in the intensity of the laser emission. The benefit in this case is that a field is not required to maintain the texture as the scattering and homeotropic states are both stable in zero field. This offers a lower power consumption alternative to the electric-field induced static scattering sample.
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.
Resumo:
We report the construction of a new class of micromachined displacement sensors that employ the phenomenon of vibration-mode localization for monitoring minute inertial displacements. It is demonstrated both theoretically and experimentally that the eigenstate-shifted output signal of such mode-localized displacement sensors may be as high as 1000 times greater than corresponding resonant-frequency variations that serve as the output in the more traditional vibratory resonant micromechanical displacement/motion sensors. The high parametric sensitivities attainable in such mode-localized displacement sensors, together with their inherent advantages of improved environmental robustness and electrical tunability, suggest an alternative approach in achieving improved sensitivity and stability in high-resolution displacement transduction. © 1992-2012 IEEE.
Resumo:
Superradiance (SR), or cooperative spontaneous emission, has been predicted by R. Dicke before the invention of the laser. During the last few years one can see a renaissance of both experimental and theoretical studies of the superradiant phase transition in a variety of media, ranging from quantum dots and Bose condensates through to black holes. Until recently, despite of many years of research, SR has been considered as a phenomenon of pure scientific interest without obvious potential applications. However, recent investigations of the femtosecond SR emission generation from semiconductors have opened up some practical opportunities for the exploitation of this quantum optics phenomenon. Here we present a brief review of some features, advantages and potential applications of the SR generation from semiconductor laser structures