9 resultados para Petrus Peregrinus, of Maricourt, 13 cent.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an assessment of the performance of an embedded propulsion system in the presence of distortion associated with boundary layer ingestion. For fan pressure ratios of interest for civil transports, the benefits of boundary layer ingestion are shown to be very sensitive to the magnitude of fan and duct losses. The distortion transfer across the fan, basically the comparison of the stagnation pressure non-uniformity downstream of the fan to that upstream of the fan, has a major role in determining the impact of boundary layer ingestion on overall fuel burn. This, in turn, puts requirements on the fidelity with which one needs to assess the distortion transfer, and thus the type of models that need to be used in such assessment. For the three-dimensional distortions associated with fuselage boundary layers ingested into a subsonic diffusing inlet, it is found that boundary layer ingestion can provide decreases in fuel burn of several per cent. It is also shown that a promising avenue for mitigating the risks (aerodynamic as well as aeromechanical) in boundary layer ingestion is to mix out the flow before it reaches the engine face.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in simulating chevron nozzle jet flows using ILES/RANS-ILES approaches and using the Ffowcs Williams and Hawkings (FW-H) surface integral method to predict the radiated far field sound is presented in this paper. With the focus on the realistic chevron geometries, SMC001 and SMC006, coarse and fine meshes are generated in the range of 3∼13 million mesh cells. Throughout this work, to minimize numerical dissipation introduced by mesh quality issues, the hexahedral cell type is used. Numerical simulations are then carried out with cell-vertex and cell-centered codes. Despite the modest grids, mean velocities and turbulent statistics are found to be in reasonable accord with measurements. Also, far field sound levels predicted by the FW-H post processor are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale.