3 resultados para Permission to Date
em Cambridge University Engineering Department Publications Database
Resumo:
AIMS: Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. MATERIALS & METHODS: The analysis is based on 20 interviews with leading industrialists in the field. RESULTS: The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. CONCLUSION: Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.
Resumo:
The response of surface structures to tunnelling induced ground movements is an area of great importance for any urban tunnelling project. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of aluminium beams of varying stiffness to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction behaviour. Results to date indicate that the relative structure-soil stiffness is the governing factor in determining how a structure will respond to tunnelling. This parameter is highly dependent on both the structure and soil stiffness. It is also shown that contrary to common assumptions in the literature, negligible axial strains are transferred into the structure. This paper outlines the results of the research to date. © 2010 Taylor & Francis Group, London.
Resumo:
Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.