4 resultados para Periodical
em Cambridge University Engineering Department Publications Database
Resumo:
Comprehensive understanding of the long-term performance of cement-bentonite slurry trench cut-off walls is essential as these mixes may degrade when exposed to aggressive environments or when subjected to prolonged drying. A series of wetting-drying and immersion experiments was carried out to evaluate the durability characteristics of laboratory mixed samples and block field samples from 40 days to 11 years of age. For the wetting-drying tests, the samples buried in medium graded sand were subjected to periodical flooding and drying cycles. They were then used for permeability testing and unconfined compressive strength (UCS) testing. For the immersion tests, the samples confined in perforated molds were submerged in magnesium sulfate solution for 16 weeks and their microstructures were then analyzed using X-ray diffraction (XRD) technique. This paper identifies the effects of contaminant exposure on durability of cement-bentonite and the effects of aging by comparing 11 years old samples to younger samples. Test results showed that young or previously contaminated cement-bentonite mixes are more susceptible to sulfate attack than old or less contaminated mixes. Copyright ASCE 2008.
Resumo:
A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.
Resumo:
Multiwalled carbon nanotubes are highly diffractive structures in the optical regime. Their metallic character and large scattering cross-section allow their usage as diffractive elements in Fraunhofer holograms. This work elaborates some important features of the far field diffraction patterns produced from periodic arrays of nanotubes. A theoretical approach for the interaction of arrays of nanotubes with light is presented and a computer generated hologram is calculated by means of periodical patterns. Based on the results, fabrication of carbon nanotube arrays (in holographic patterns) was performed. Experimentally measured diffraction patterns were in good agreement with the calculations.