4 resultados para Patched-conic

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have fabricated a series of polymer stabilized chiral nematic test cells for use as flexoelectro-optic devices. The devices fabricated were based on commercial chiral nematic mixtures which were polymer stabilized so as to enhance the uniformity and stability of the uniform lying helix texture in the cells. During fabrication and test procedures a series of unusual scattering states have been observed within the devices at different viewing angles. The observations made so far indicate that the properties of the scattering state lies somewhere between the focal conic texture and the Grandjean or planar texture and that the devices exhibit both a helical pitch selective reflection and scattering effect. What is even more dramatic is that the wavelength selectivity of the scattering effect can be tuned by an applied field. In addition, we show that it is possible to achieve good uniform lying helix textures from such devices. Moreover, we show that in certain cases the spontaneous alignment of the helix in the plane of the device opens up the possibility of a new mode of switching. Flexoelectric, Redshift, Coloured scattering, Liquid crystal, Polymer-stabilized liquid-crystal;.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoisomerisation of a flexoelectric chiral nematic bimesogen system dyed with an azo dye has been investigated. The host material has a pitch and field dependent tilt angle that are temperature independent. Upon illumination by ultra violet, the azo dye molecules undergo a shape change from their trans to cis isomer. The effect of the shape change of the dye on the mixture is to decrease the I-N* transition temperatures, to increase the response times and to decrease the transmitted optical intensity. For the same reduced temperatures, the tilt angles, pitch and threshold voltages for the transition from focal conic to homeotropic textures are unchanged. The macroscopic parameters observed suggest that the orientational order parameter of the system is reduced by UV illumination. The cis isomers do not appear to separate from the host material or significantly change the flexoelectric coefficient. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.