3 resultados para Pasta de cimento

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans perform fascinating science experiments at home on a daily basis when they undertake the modification of natural and naturally-derived materials by a cooking process prior to consumption. The material properties of such foods are of interest to food scientists (texture is often fundamental to food acceptability), oral biologists (foods modulate feeding behavior), anthropologists (cooking is probably as old as the genus Homo and distinguishes us from all other creatures) and dentists (foods interact with tooth and tooth replacement materials). Materials scientists may be interested in the drastic changes in food properties observed over relatively short cooking times. In the current study, the mechanical properties of one of the most common (and oldest at 4,000+ years) foods on earth, the noodle, were examined as a function of cooking time. Two types of noodles were studied, each made from natural materials (wheat flour, salt, alkali and water) by kneading dough and passing them through a pasta-making machine. These were boiled for between 2-14 min and tested at regular intervals from raw to an overcooked state. Cyclic tensile tests at small strain levels were used to examine energy dissipation characteristics. Energy dissipation was >50% per cycle in uncooked noodles, but decreased by an order of magnitude with cooking. Fractional dissipation values remained approximately constant at cooking times greater than 7 min. Overall, a greater effect of cooking was on viscoplastic dissipation characteristics rather than on fracture resistance. The results of the current study plot the evolution of a viscoplastic mixture into an essentially elastic material in the space of 7 minutes and have broad implications for understanding what cooking does to food materials. In particular, they suggest that textural assessment by consumers of the optimally cooked state of food has a definite physical definition. © 2007 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.