27 resultados para Parametric study
em Cambridge University Engineering Department Publications Database
Resumo:
The generation of sound by turbulent boundary-layer flow at low Mach number over a rough wall is investigated by applying a theoretical model that describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of far-field radiated roughness noise. Models for the source statistics are obtained by scaling smooth-wall data by the increased skin friction velocity and boundary-layer thickness for a rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibit reasonable agreement with the predicted level. Estimates of the roughness noise for a Boeing 757 sized aircraft wing with idealized levels of surface roughness show that hi the high-frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels are observed for the roughness noise. The trailing edge noise is also enhanced by surface roughness somewhat A parametric study indicates that roughness height and roughness density significantly affect the roughness noise with roughness height having the dominant effect The roughness noise directivity varies with different levels of surface roughness. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The generation of sound by turbulent boundary layer flow at low Mach number over a rough wall is investigated by applying the theoretical model which describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of the roughness noise radiated to far field. Empirical models for the source statistics are obtained by scaling smooth-wall data through increased skin friction velocity and boundary layer thickness for the rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet by four 1/2'' free-field condenser microphones. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibits encouraging agreement with the predicted spectra. Also, a phased microphone array is utilized to localize the sound source, and it confirms that the rough plates generate higher source strengthes in this frequency range. A parametric study illustrates that the roughness height and roughness density significantly affect the far-field radiated roughness noise with the roughness height having the dominant effect. The estimates of the roughness noise for a Boeing 757 sized aircraft wing show that in high frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels for the roughness noise are also observed.
Resumo:
Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.
Resumo:
This paper proposes a simple method to include superstructure stiffness in foundation analyses. The method involves extracting a small "condensed structural matrix" from finite element models of the superstructure, which can then be incorporated into pile group or piled raft analyses using common approaches such as elastic continuum or load transfer methods. The matrix condensation method directly couples structural and geotechnical analyses, and eliminates the need for iterative analyses between structural and geotechnical engineers. Effectiveness of the approach is illustrated through analyses of several buildings designed with a typical floor plan but with varying heights. The parametric study illustrates that superstructure stiffness can have a significant influence on foundation settlement estimates, and the stiffening effects are dominated by the lower stories of the superstructure. The proposed method aims to bridge the gap between structural and geotechnical analyses. Also, being a computationally simple and accurate approach, it is applicable to parametric or optimization studies that would otherwise involve large amounts of analyses. © 2010 ASCE.
Resumo:
New types of vortex generators for boundary layer control were investigated experimentally in a flow field which contains a Mach 1.4 normal Shockwave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken with two novel devices: ramped-vanes and split-ramps. Flowfield diagnostics included high-speed Schlieren, oil flow visualization, and pitot-static pressure measurements. A number of flowfield parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline. All configurations tested yielded an elimination of centerline flow separation with the presence of the vortex generators. However, the devices also tended to increase the three-dimensionality of the flow with increased side-wall interaction. When located 25δo upstream of the normal shock, the largest ramped-vane device (whose height was about 0.75 the incoming uncontrolled boundary layer thickness, δo) yielded the smallest centerline incompressible shape factor and the least streamwise oscillations of the normal shock. However, additional studies are needed to better understand the corner interaction effects, which are substantial. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. In this paper, we focus on an inflatable tension cone design that has potential advantages over other geometries. A computational fluid-structure interaction model of a tension cone is employed to investigate the behavior of the inflatable aeroshell at supersonic speeds for conditions matching recent experimental results. A parametric study is carried out to investigate the deflections of the tension cone as a function of inflation pressure of the torus at a Mach of 2.5. Comparison of the behavior of the structure, amplitude of deformations, and determined loads are reported. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The phenomenon of fracturing in sand as a result of compensation grouting was studied. Processes of fracture initiation and propagation were explained and a parametric study was conducted in order to investigate the factors that cause sand fracturing to occur. Experimental results indicate that fracture initiation requires the existence of a local inhomogeneity around the injection position. Grout mixture in terms of water-cement ratio and fines content had major roles in sand fracturing, whereas injection rate had a minor influence under the tested conditions. © 2009 Taylor & Francis Group.
Resumo:
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels. © 2011 The Combustion Institute.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behaviour of grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading and the near-casing flow field is then studied using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. Copyright © 2009 Rolls-Royce plc.
Resumo:
Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.