14 resultados para Parallel design multicenter

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An 8 × 8 pipelined parallel multiplier which uses the Dadda scheme is presented. The multiplier has been implemented in a 3-μm n-well CMOS process with two layers of metal using a standard cell automatic placement and routing program. The design uses a form of pipelined carry look-ahead adder in the final stage of summation, thus providing a significant contribution to the high performance of the multiplier. The design is expected to operate at a clock frequency of at least 50 MHz and has a flush time of seven clock cycles. The design illustrates a possible method of implementing an irregular architecture in VLSI using multiple levels of low-resistance, low-capacitance interconnect and automated layout techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical spring-damper network performance can often be improved by the inclusion of a third passive component called the inerter. This ideally has the characteristic that the force at the terminals is directly proportional to the relative acceleration between them. The fluid inerter presented here has advantages over mechanical ball screw devices in terms of simplicity of design. Furthermore, it can be readily adapted to implement various passive network layouts. Variable orifices and valves can be included to provide series or parallel damping. Test data from prototypes with helical tubes have been compared with models to investigate parasitic damping effects of the fluid. © 2013 Copyright Taylor and Francis Group, LLC.