4 resultados para Painted Sculpture
em Cambridge University Engineering Department Publications Database
Resumo:
The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanners. In this paper, we present a novel technique that is capable of producing unbiased thickness estimates down to 0.3mm. The technique relies on a mathematical model of the anatomy and the imaging system, which is fitted to the data at a large number of sites around the proximal femur, producing around 17,000 independent thickness estimates per specimen. In a series of experiments on 16 cadaveric femurs, estimation errors were measured as -0.01+/-0.58mm (mean+/-1std.dev.) for cortical thicknesses in the range 0.3-4mm. This compares with 0.25+/-0.69mm for simple thresholding and 0.90+/-0.92mm for a variant of the 50% relative threshold method. In the clinically relevant sub-millimetre range, thresholding increasingly fails to detect the cortex at all, whereas the new technique continues to perform well. The many cortical thickness estimates can be displayed as a colour map painted onto the femoral surface. Computation of the surfaces and colour maps is largely automatic, requiring around 15min on a modest laptop computer.
Resumo:
This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.