43 resultados para POLYTOPIC UNCERTAINTIES

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Symposium was aimed at the theoretical and numerical problems involved in modelling the dynamic response of structures which have uncertain properties due ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuels are increasingly promoted worldwide as a means for reducing greenhouse gas (GHG) emissions from transport. However, current regulatory frameworks and most academic life cycle analyses adopt a deterministic approach in determining the GHG intensities of biofuels and thus ignore the inherent risk associated with biofuel production. This study aims to develop a transparent stochastic method for evaluating UK biofuels that determines both the magnitude and uncertainty of GHG intensity on the basis of current industry practices. Using wheat ethanol as a case study, we show that the GHG intensity could span a range of 40-110 gCO2e MJ-1 when land use change (LUC) emissions and various sources of uncertainty are taken into account, as compared with a regulatory default value of 44 gCO2e MJ-1. This suggests that the current deterministic regulatory framework underestimates wheat ethanol GHG intensity and thus may not be effective in evaluating transport fuels. Uncertainties in determining the GHG intensity of UK wheat ethanol include limitations of available data at a localized scale, and significant scientific uncertainty of parameters such as soil N2O and LUC emissions. Biofuel polices should be robust enough to incorporate the currently irreducible uncertainties and flexible enough to be readily revised when better science is available. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of robust stabilization of nonlinear systems in the presence of input uncertainties is of great importance in practical implementation. Stabilizing control laws may not be robust to this type of uncertainty, especially if cancellation of nonlinearities is used in the design. By exploiting a connection between robustness and optimality, "domination redesign" of the control Lyapunov function (CLF) based Sontag's formula has been shown to possess robustness to static and dynamic input uncertainties. In this paper we provide a sufficient condition for the domination redesign to apply. This condition relies on properties of local homogeneous approximations of the system and of the CLF. We show that an inverse optimal control law may not exist when these conditions are violated and illustrate how these conditions may guide the choice of a CLF which is suitable for domination redesign. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas turbine compression systems are required to perform adequately over a range of operating conditions. Complexity has encouraged the conventional design process for compressors to focus initially on one operating point, usually the most commonor arduous, to draw up an outline design. Generally, only as this initial design is refined is its offdesign performance assessed in detail. Not only does this necessarily introduce a potentially costly and timeconsuming extra loop in the design process, but it also may result in a design whose offdesign behavior is suboptimal. Aversion of nonintrusive polynomial chaos was previously developed in which a set of orthonormal polynomials was generated to facilitate a rapid analysis of robustness in the presence of generic uncertainties with good accuracy. In this paper, this analysis method is incorporated in real time into the design process for the compression system of a three-shaft gas turbine aeroengine. This approach to robust optimization is shown to lead to designs that exhibit consistently improved system performance with reduced sensitivity to offdesign operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article summarizes the key findings and recommendations of the Royal Society/Royal Academy of Engineering Report on Nanotechnology1. The report is enthusiastic about the great potential benefits of nanotechnologies. Uncertainties associated with the health and environmental impacts of free, manufactured nanoparticles and nanotubes are discussed. It recommends research to understand better their toxicology and exposure pathways, and actions to restrict exposure of humans and the environment to free, manufactured nanoparticles and nanotubes until they are better understood. The need for public dialogue about the development of nanotechnologies is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.