30 resultados para POLY(PROPYLENE GLYCOL)
em Cambridge University Engineering Department Publications Database
Resumo:
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for studying the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and toughness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their singlecomponent counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Singlecomponent and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer concentration was demonstrated for all systems. Alginate hydrogels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhibited a combination of the mechanical properties of the constituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Resumo:
Transport measurements were performed on individual PECVD grown MWCNT nanobridge structures. Temperature dependent conductance measurements show that as the temperature is decreased, the conductance also decreases. The nanotubes were able to carry high current densities with the observed maximum at ∼108 A/cm2. High volatile measurements reveal that the PECVD grown MWCNTs break down in segments of nanotube shells.
Resumo:
Poly-methylmethacrylate suspended dispersion was used to fabricate multiwalled carbon nanotube (MWCNT) bridges. Using this technique, nanotubes could be suspended between metal electrodes without any chemical etching of the substrate. The electrical measurement on suspended MWCNT bridges shows that the room temperature resistance ranges from under a kω to a few Mω.