19 resultados para PMCA2, Neurodegeneration, Parkinson Erkrankung, MPTP

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bradykinesia is a cardinal feature of Parkinson's disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes. Methodology/Principal Findings: We developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific. Conclusions/Significance: We suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes. © 2012 Shiner et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning. © 2012 The Author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypeptide sequences have an inherent tendency to self-assemble into filamentous nanostructures commonly known as amyloid fibrils. Such self-assembly is used in nature to generate a variety of functional materials ranging from protective coatings in bacteria to catalytic scaffolds in mammals. The aberrant self-assembly of misfolded peptides and proteins is also, however, implicated in a range of disease states including neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is increasingly evident that the intrinsic material properties of these structures are crucial for understanding the thermodynamics and kinetics of the pathological deposition of proteins, particularly as the mechanical fragmentation of aggregates enhances the rate of protein deposition by exposing new fibril ends which can promote further growth. We discuss here recent advances in physical techniques that are able to characterise the hierarchical self-assembly of misfolded protein molecnles and define their properties. © 2010 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic measurements of amyloid growth provide insight into the free energy landscape of this supramolecular process and are crucial in the search for potent inhibitors of the main disorders with which it is associated, including Alzheimer's and Parkinson's diseases and Type II diabetes. In recent years, a new class of surface-bound biosensor assays, e.g., those based on surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM) have been established as extremely valuable tools for kinetic measurements of amyloid formation. Here we describe detailed protocols of how QCM techniques can be used to monitor the elongation of amyloid fibrils in real time and to study the influence of external factors on the kinetics of amyloid growth with unprecedented accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new approach for quantifying regions of interest (ROIs) in medical image data. Rotationally invariant shape descriptors (ISDs) were applied to 3D brain regions extracted from MRI scans of 5 Parkinson's patients and 10 control subjects. We concentrated on the thalamus and the caudate nucleus since prior studies have suggested they are affected in Parkinson's disease (PD). In the caudate, both the ISD and volumetric analyses found significant differences between control and PD subjects. The ISD analysis however revealed additional differences between the left and right caudate nuclei in both control and PD subjects. In the thalamus, the volumetric analysis showed significant differences between PD and control subjects, while ISD analysis found significant differences between the left and right thalami in control subjects but not in PD patients, implying disease-induced shape changes. These results suggest that employing ISDs for ROI characterization both complements and extends traditional volumetric analyses. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)- anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson's disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first noncontact photoconductivity measurements of gallium nitride nanowires (NWs) are presented, revealing a high crystallographic and optoelectronic quality achieved by use of catalyst-free molecular beam epitaxy. In comparison with bulk material, the NWs exhibit a long conductivity lifetime (>2 ns) and a high mobility (820 ± 120 cm 2/(V s)). This is due to the weak influence of surface traps with respect to other III-V semiconducting NWs and to the favorable crystalline structure of the NWs achieved via strain-relieved growth. © 2012 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.