13 resultados para PHASE-STABILITY
em Cambridge University Engineering Department Publications Database
Resumo:
Spatial light modulators based around liquid crystal on silicon have found use in a variety of telecommunications applications, including the optimization of multimode fibers, free-space communications, and wavelength selective switching. Ferroelectric liquid crystals are attractive in these areas due to their fast switching times and high phase stability, but the necessity for the liquid crystal to spend equal time in each of its two possible states is an issue of practical concern. Using the highly parallel nature of a graphics processing unit architecture, it is possible to calculate DC balancing schemes of exceptional quality and stability.
Resumo:
Even though synchronization in autonomous systems has been observed for over three centuries, reports of systematic experimental studies on synchronized oscillators are limited. Here, we report on observations of internal synchronization in coupled silicon micromechanical oscillators associated with a reduction in the relative phase random walk that is modulated by the magnitude of the reactive coupling force between the oscillators. Additionally, for the first time, a significant improvement in the frequency stability of synchronized micromechanical oscillators is reported. The concept presented here is scalable and could be suitably engineered to establish the basis for a new class of highly precise miniaturized clocks and frequency references. © 2013 American Physical Society.
Resumo:
Gold-decorated silica nanoparticles were synthesized in a two-step process in which silica nanoparticles were produced by chemical vapor synthesis using tetraethylorthosilicate (TEOS) and subsequently decorated using two different gas-phase evaporative techniques. Both evaporative processes resulted in gold decoration of the silica particles. This study compares the mechanisms of particle decoration for a production method in which the gas and particles remain cool to a method in which the entire aerosol is heated. Results of transmission electron microscopy and visible spectroscopy studies indicate that both methods produce particles with similar morphologies and nearly identical absorption spectra, with peak absorption at 500-550 nm. A study of the thermal stability of the particles using heated-TEM indicates that the gold decoration on the particle surface remains stable at temperatures below 900 °C, above which the gold decoration begins to both evaporate and coalesce.
Resumo:
We demonstrate that surface stresses in epitaxially grown VO₂ nanowires (NWs) have a strong effect on the appearance and stability of intermediate insulating M₂ phases, as well as the spatial distribution of insulating and metallic domains during structural phase transitions. During the transition from an insulating M1 phase to a metallic R phase, the coexistence of insulating M₁ and M₂ phases with the absence of a metallic R phase was observed at atmospheric pressure. In addition, we show that, for a VO₂ NW without the presence of an epitaxial interface, surface stresses dominantly lead to spatially inhomogeneous phase transitions between insulating and metallic phases. In contrast, for a VO₂ NW with the presence of an epitaxial interface, the strong epitaxial interface interaction leads to additional stresses resulting in uniformly alternating insulating and metallic domains along the NW length.
Resumo:
A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.
Resumo:
A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.
Resumo:
This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
Experimental demonstration of lasing in a broad area twin-contact semiconductor laser which operates as a phase-conjugation (PC) mirror in an external cavity configuration is reported. This allows "self-aligned" and self-pumped spatially nondegenerate four-wave mixing to be achieved without the need for external optical signals. The external cavity laser system is very insensitive to tilt misalignments of the external mirror in the PC regime and exhibits very good mechanical stability. The resonant frequency of the external cavity lies in the GHz range which corresponds to a subnanosecond time response of phase conjugation processes in the semiconductor laser. © 1997 American Institute of Physics.
Resumo:
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation.
Resumo:
This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.