8 resultados para PECTORALIS-MAJOR
em Cambridge University Engineering Department Publications Database
Resumo:
Salmonella enterica sv. typhimurium (S. enterica sv. Typhimurium) has two metal-transporting P(1)-type ATPases whose actions largely overlap with respect to growth in elevated copper. Mutants lacking both ATPases over-accumulate copper relative to wild-type or either single mutant. Such duplication of ATPases is unusual in bacterial copper tolerance. Both ATPases are under the control of MerR family metal-responsive transcriptional activators. Analyses of periplasmic copper complexes identified copper-CueP as one of the predominant metal pools. Expression of cueP was recently shown to be controlled by the same metal-responsive activator as one of the P(1)-type ATPase genes (copA), and copper-CueP is a further atypical feature of copper homeostasis in S. enterica sv. Typhimurium. Elevated copper is detected by a reporter construct driven by the promoter of copA in wild-type S. enterica sv. Typhimurium during infection of macrophages. Double mutants missing both ATPases also show reduced survival inside cultured macrophages. It is hypothesized that elevated copper within macrophages may have selected for specialized copper-resistance systems in pathogenic microorganism such as S. enterica sv. Typhimurium.
Resumo:
Campylobacter jejuni is a leading cause of human diarrheal illness in the world, and research on it has benefitted greatly by the completion of several genome sequences and the development of molecular biology tools. However, many hurdles remain for a full understanding of this unique bacterial pathogen. One of the most commonly used strains for genetic work with C. jejuni is NCTC11168. While this strain is readily transformable with DNA for genomic recombination, transformation with plasmids is problematic. In this study, we have identified a determinant of this to be cj1051c, predicted to encode a restriction-modification type IIG enzyme. Knockout mutagenesis of this gene resulted in a strain with a 1,000-fold-enhanced transformation efficiency with a plasmid purified from a C. jejuni host. Additionally, this mutation conferred the ability to be transformed by plasmids isolated from an Escherichia coli host. Sequence analysis suggested a high level of variability of the specificity domain between strains and that this gene may be subject to phase variation. We provide evidence that cj1051c is active in NCTC11168 and behaves as expected for a type IIG enzyme. The identification of this determinant provides a greater understanding of the molecular biology of C. jejuni as well as a tool for plasmid work with strain NCTC11168. © 2012, American Society for Microbiology.