4 resultados para PDO and PGI products

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction between MgO and microsilica has been studied by many researchers, who confirmed the formation of magnesium silicate hydrate. The blend was reported to have the potential as a novel material for construction and environment purposes. However, the characteristics of MgO vary significantly, e.g., reactivity and purity, which would have an effect on the hydration process of MgO-silica blend. This paper investigated the strength and hydration products of reactive MgO and silica blend at room temperature up to 90 days. The existence of magnesium silicate hydrate after 7 days' curing was confirmed with the help of infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The microstructural and elemental analysis of the resulting magnesium silicate hydrate was conducted using scanning electron microscopy and energy dispersive spectroscopy. In addition, the effect of characteristics of MgO on the hydration process was discussed. It was found that the synthesis of magnesium silicate hydrate was highly dependent on the reactivity of the precursors. MgO and silica with higher reactivity resulted in higher formation rate of magnesium silicate hydrate. In addition, the impurity in the MgO affects the pH value of the blends, which in turn determines the solubility of silica and the formation of magnesium silicate hydrate. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a neces- sity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the chal- lenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabil- ities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry manage- ment in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design sys- tem, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heav- ily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a necessity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the challenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabilities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry management in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design system, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heavily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. ©2012 AIAA.