31 resultados para Over-representation

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is essential not only to maintain the livelihoods of human beings but also to sustain ecosystems. Over the last few decades several global assessments have reviewed current and future uses of water, and have offered potential solutions to a possible water crisis. However, these have tended to focus on water supply rather than on the range of demands for all water services (including those of ecosystems). In this paper, a holistic global view of water resources and the services they provide is presented, using Sankey diagrams as a visualisation tool. These diagrams provide a valuable addition to the spatial maps of other global assessments, as they track the sources, uses, services and sinks of water resources. They facilitate comparison of different water services, and highlight trade-offs amongst them. For example, they reveal how increasing the supply of water resources to one service (crop production) can generate a reduction in provision of other water services (e.g., to ecosystem maintenance). The potential impacts of efficiency improvements in the use of water are also highlighted; for example, reduction in soil evaporation from crop production through better farming practices, or the results of improved treatment and re-use of return flows leading to reduction of delivery to final sinks. This paper also outlines the measures needed to ensure sustainable water resource use and supply for multiple competing services in the future, and emphasises that integrated management of land and water resources is essential to achieve this goal. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.