65 resultados para Over adaptation
em Cambridge University Engineering Department Publications Database
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. In normal cross adaptation it is assumed that useful diversity among systems exists only at acoustic level. However, complimentary features among complex LVCSR systems also manifest themselves in other layers of modelling hierarchy, e.g., subword and word level. It is thus interesting to also cross adapt language models (LM) to capture them. In this paper cross adaptation of multi-level LMs modelling both syllable and word sequences was investigated to improve LVCSR system combination. Significant error rate gains up to 6.7% rel. were obtained over ROVER and acoustic model only cross adaptation when combining 13 Chinese LVCSR subsystems used in the 2010 DARPA GALE evaluation. © 2010 ISCA.
Resumo:
A significant proportion of the processing delays within the visual system are luminance dependent. Thus placing an attenuating filter over one eye causes a temporal delay between the eyes and thus an illusion of motion in depth for objects moving in the fronto-parallel plane, known as the Pulfrich effect. We have used this effect to study adaptation to such an interocular delay in two normal subjects wearing 75% attenuating neutral density filters over one eye. In two separate experimental periods both subjects showed about 60% adaptation over 9 days. Reciprocal effects were seen on removal of the filters. To isolate the site of adaptation we also measured the subjects' flicker fusion frequencies (FFFs) and contrast sensitivity functions (CSFs). Both subjects showed significant adaptation in their FFFs. An attempt to model the Pulfrich and FFF adaptation curves with a change in a single parameter in Kelly's [(1971) Journal of the Optical Society of America, 71, 537-546] retinal model was only partially successful. Although we have demonstrated adaptation in normal subjects to induced time delays in the visual system we postulate that this may at least partly represent retinal adaptation to the change in mean luminance.
Resumo:
As the use of found data increases, more systems are being built using adaptive training. Here transforms are used to represent unwanted acoustic variability, e.g. speaker and acoustic environment changes, allowing a canonical model that models only the "pure" variability of speech to be trained. Adaptive training may be described within a Bayesian framework. By using complexity control approaches to ensure robust parameter estimates, the standard point estimate adaptive training can be justified within this Bayesian framework. However during recognition there is usually no control over the amount of data available. It is therefore preferable to be able to use a full Bayesian approach to applying transforms during recognition rather than the standard point estimates. This paper discusses various approximations to Bayesian approaches including a new variational Bayes approximation. The application of these approaches to state-of-the-art adaptively trained systems using both CAT and MLLR transforms is then described and evaluated on a large vocabulary speech recognition task. © 2005 IEEE.
Resumo:
Discriminative mapping transforms (DMTs) is an approach to robustly adding discriminative training to unsupervised linear adaptation transforms. In unsupervised adaptation DMTs are more robust to unreliable transcriptions than directly estimating adaptation transforms in a discriminative fashion. They were previously proposed for use with MLLR transforms with the associated need to explicitly transform the model parameters. In this work the DMT is extended to CMLLR transforms. As these operate in the feature space, it is only necessary to apply a different linear transform at the front-end rather than modifying the model parameters. This is useful for rapidly changing speakers/environments. The performance of DMTs with CMLLR was evaluated on the WSJ 20k task. Experimental results show that DMTs based on constrained linear transforms yield 3% to 6% relative gain over MLE transforms in unsupervised speaker adaptation. © 2011 IEEE.
Resumo:
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.
Resumo:
Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.
Resumo:
For many applications, it is necessary to produce speech transcriptions in a causal fashion. To produce high quality transcripts, speaker adaptation is often used. This requires online speaker clustering and incremental adaptation techniques to be developed. This paper presents an integrated approach to online speaker clustering and adaptation which allows efficient clustering of speakers using the same accumulated statistics that are normally used for adaptation. Using a consistent criterion for both clustering and adaptation should yield gains for both stages. The proposed approach is evaluated on a meetings transcription task using audio from multiple distant microphones. Consistent gains over standard clustering and adaptation were obtained. Copyright © 2011 ISCA.
Resumo:
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. © 2012 Kadiallah et al.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple sub-systems that may even be developed at different sites. Cross system adaptation, in which model adaptation is performed using the outputs from another sub-system, can be used as an alternative to hypothesis level combination schemes such as ROVER. Normally cross adaptation is only performed on the acoustic models. However, there are many other levels in LVCSR systems' modelling hierarchy where complimentary features may be exploited, for example, the sub-word and the word level, to further improve cross adaptation based system combination. It is thus interesting to also cross adapt language models (LMs) to capture these additional useful features. In this paper cross adaptation is applied to three forms of language models, a multi-level LM that models both syllable and word sequences, a word level neural network LM, and the linear combination of the two. Significant error rate reductions of 4.0-7.1% relative were obtained over ROVER and acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.