187 resultados para Organic thin film transistor devices

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) and silicon oxide (SiOx) as gate dielectrics for organic thin-film transistors (OTFTs), with solution-processed poly[5, 5′ -bis(3-dodecyl-2-thienyl)-2, 2′ -bithiophene] (PQT-12) as the active semiconductor layer. We examine transistors with SiNx films of varying composition deposited at 300 °C as well as 150 °C for plastic compatibility. The transistors show over 100% (two times) improvement in field-effect mobility as the silicon content in SiNx increases, with mobility (μFE) up to 0.14 cm2 /V s and on/off current ratio (ION / IOFF) of 108. With PECVD SiOx gate dielectric, preliminary devices exhibit a μFE of 0.4 cm2 /V s and ION / IOFF of 108. PQT-12 OTFTs with PECVD SiNx and SiOx gate dielectrics on flexible plastic substrates are also presented. These results demonstrate the viability of using PECVD SiN x and SiOx as gate dielectrics for OTFT circuit integration, where the low temperature and large area deposition capabilities of PECVD films are highly amenable to integration of OTFT circuits targeted for flexible and lightweight applications. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic electronics is a rapidly expanding topic, much of which has been focused on organic semiconductors. However, it is also of interest to find viable ways to integrate nanomaterials, such as silicon nanowires (SiNWs) and carbon nanotubes (CNTs), into this technology. Here, we present methods of fabrication of composite devices incorporating such nanostructured materials into an organic matrix. We investigate the formation of polymer/CNT composites, for which we use the semiconducting polymer poly(3,3‴-dialkyl-quaterthiophene) (PQT). We also report a method of fabricating polymer/SiNW TFTs, whereby sparse arrays of parallel oriented SiNWs are initially prepared on silicon dioxide substrates from forests of as-grown gold-catalysed SiNWs. Subsequent ink-jet printing of PQT on these arrays produces a polymer/SiNW composite film. We also present the electrical characterization of all composite devices. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V∈s was achieved, which is comparable to that of single-crystal CuPc devices (0.1-1 cm2/V∈s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed. © 2009 Springer-Verlag.