203 resultados para Order tracking
em Cambridge University Engineering Department Publications Database
Resumo:
Using fluorescence microscopy with single molecule sensitivity it is now possible to follow the movement of individual fluorophore tagged molecules such as proteins and lipids in the cell membrane with nanometer precision. These experiments are important as they allow many key biological processes on the cell membrane and in the cell, such as transcription, translation and DNA replication, to be studied at new levels of detail. Computerized microscopes generate sequences of images (in the order of tens to hundreds) of the molecules diffusing and one of the challenges is to track these molecules to obtain reliable statistics such as speed distributions, diffusion patterns, intracellular positioning, etc. The data set is challenging because the molecules are tagged with a single or small number of fluorophores, which makes it difficult to distinguish them from the background, the fluorophore bleaches irreversibly over time, the number of tagged molecules are unknown and there is occasional loss of signal from the tagged molecules. All these factors make accurate tracking over long trajectories difficult. Also the experiments are technically difficulty to conduct and thus there is a pressing need to develop better algorithms to extract the maximum information from the data. For this purpose we propose a Bayesian approach and apply our technique to synthetic and a real experimental data set.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
Campylobacter jejuni is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the C. jejuni growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic 'stationary phase', characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (1H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires pta (Cj0688) and ackA (Cj0689), although the acs homologue (Cj1537c) is not required. Insertion mutants in Cj0688 and Cj0689 maintain viability less well during the stationary and decline phases of the growth cycle than wild-type C. jejuni, suggesting that these genes, and the acetate pathway, are important for survival.
Resumo:
An expression for the probability density function of the second order response of a general FPSO in spreading seas is derived by using the Kac-Siegert approach. Various approximations of the second order force transfer functions are investigated for a ship-shaped FPSO. It is found that, when expressed in non-dimensional form, the probability density function of the response is not particularly sensitive to wave spreading, although the mean squared response and the resulting dimensional extreme values can be sensitive. The analysis is then applied to a Sevan FPSO, which is a large cylindrical buoy-like structure. The second order force transfer functions are derived by using an efficient semi-analytical hydrodynamic approach, and these are then employed to yield the extreme response. However, a significant effect of wave spreading on the statistics for a Sevan FPSO is found even in non-dimensional form. It implies that the exact statistics of a general ship-shaped FPSO may be sensitive to the wave direction, which needs to be verified in future work. It is also pointed out that the Newman's approximation regarding the frequency dependency of force transfer function is acceptable even for the spreading seas. An improvement on the results may be attained when considering the angular dependency exactly. Copyright © 2009 by ASME.
Resumo:
In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.