13 resultados para Orbits

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the rhythmic stabilization of periodic orbits in a wedge billiard with actuated edges. The output feedback strategy, based on the sole measurement of impact times, results from the combination of a stabilizing state feedback control law and a nonlinear deadbeat state estimator. It is shown that the robustness of both the control law and the observer leads to a simple rhythmic controller achieving a large basin of attraction. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hoberman 'switch-pitch ' ball is a transformable structure with a single folding and unfolding path. The underlying cubic structure has a novel mechanism that retains tetrahedral symmetry during folding. Here, we propose a generalized class of structures of a similar type that retain their full symmetry during folding. The key idea is that we require two orbits of nodes for the structure: within each orbit, any node can be copied to any other node by a symmetry operation. Each member is connected to two nodes, which may be in different orbits, by revolute joints. We will describe the symmetry analysis that reveals the symmetry of the internal mechanism modes for a switch-pitch structure. To follow the complete folding path of the structure, a nonlinear iterative predictor-corrector algorithm based on the Newton method is adopted. First, a simple tetrahedral example of the class of two-orbit structures is presented. Typical configurations along the folding path are shown. Larger members of the class of structures are also presented, all with cubic symmetry. These switch-pitch structures could have useful applications as deployable structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers the feedback stabilization of periodic orbits in a planar juggler. The juggler is "blind," i.e, he has no other sensing capabilities than the detection of impact times. The robustness analysis of the proposed control suggests that the arms acceleration at impact is a crucial design parameter even though it plays no role in the stability analysis. Analytical results and convergence proofs are provided for a simplified model of the juggler. The control law is then adapted to a more accurate model and validated in an experimental setup. © 2007 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper studies the properties of a sinusoidally vibrating wedge billiard as a model for 2-D bounce juggling. It is shown that some periodic orbits that are unstable in the elastic fixed wedge become exponentially stable in the nonelastic vibrating wedge. These orbits are linked with certain classical juggling patterns, providing an interesting benchmark for the study of the frequency-locking properties in human rhythmic tasks. Experimental results on sensorless stabilization of juggling patterns are described. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the question relative to the role of sensory feedback in rhythmic tasks. We study the properties of a sinusoidally vibrating wedge-billiard as a model for 2-D bounce juggling. If this wedge is actuated with an harmonic sinusoidal input, it has been shown that some periodic orbits are exponentially stable. This paper explores an intuitive method to enlarge the parametric stability region of the simplest of these orbits. Accurate processing of timing is proven to be an important key to achieve frequency-locking in rhythmic tasks. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.