93 resultados para Optimum conditions

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wavelength dependent transmission performance of adaptively modulated optical OFDM (AMOOFDM) signals is investigated, for the first time, over optical amplification- and chromatic dispersion compensation-free IMDD SMF systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical SOA model describing both optical gain saturation and gain spectral dynamics is developed, based on which optimum SOA operating conditions are identified for various wavelengths varying in a broad range of 1510 nm- 1590 nm. Results show that, SOA intensity modulators operating at the identified optimum conditions enable the realization of colourless AMOOFDM transmitters within the aforementioned wavelength window. Such transmitters are capable of supporting >30 Gb/s signal transmission over 60 km SMFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc., i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials. © 2005 The Royal Society.