44 resultados para On-line movement control
em Cambridge University Engineering Department Publications Database
Resumo:
A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilises a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. The computer is coupled to the microscope through digital-to-analogue converters which enable it to generate ramp waveforms allowing the beam to be scanned over a small sub-region of the field under program control. A further digital-to-analogue converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analogue-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. Computations based on the intensity gradient of the image allow the objective lens current to be found for the in-focus condition, which may be related to the working distance through a previous calibration experiment. The sensitivity of the method for detecting small height changes is theoretically of the order of 1 μm. In practice the operator specifies features of interest by means of a mobile spot cursor injected into the SEM display screen, or he may scan the specimen at sub-regions corresponding to pre-determined points on a regular grid defined by him. The operation then proceeds under program control. | A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilizes a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. A further digital-to-analog converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analog-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. The sensitivity of the method for detecting small height changes is theroretically of the order of 1 mu m.
Resumo:
The optimization of dialogue policies using reinforcement learning (RL) is now an accepted part of the state of the art in spoken dialogue systems (SDS). Yet, it is still the case that the commonly used training algorithms for SDS require a large number of dialogues and hence most systems still rely on artificial data generated by a user simulator. Optimization is therefore performed off-line before releasing the system to real users. Gaussian Processes (GP) for RL have recently been applied to dialogue systems. One advantage of GP is that they compute an explicit measure of uncertainty in the value function estimates computed during learning. In this paper, a class of novel learning strategies is described which use uncertainty to control exploration on-line. Comparisons between several exploration schemes show that significant improvements to learning speed can be obtained and that rapid and safe online optimisation is possible, even on a complex task. Copyright © 2011 ISCA.