9 resultados para Object detection

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vision-based object detection has been introduced in construction for recognizing and locating construction entities in on-site camera views. It can provide spatial locations of a large number of entities, which is beneficial in large-scale, congested construction sites. However, even a few false detections prevent its practical applications. In resolving this issue, this paper presents a novel hybrid method for locating construction equipment that fuses the function of detection and tracking algorithms. This method detects construction equipment in the video view by taking advantage of entities' motion, shape, and color distribution. Background subtraction, Haar-like features, and eigen-images are used for motion, shape, and color information, respectively. A tracking algorithm steps in the process to make up for the false detections. False detections are identified by catching drastic changes in object size and appearance. The identified false detections are replaced with tracking results. Preliminary experiments show that the combination with tracking has the potential to enhance the detection performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of depth sensors and the diminishing returns to be had from appearance alone have seen a surge in shape-based methods. In this work we investigate the performance of several detectors of interest points in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new co-clustering problem of images and visual features. The problem involves a set of non-object images in addition to a set of object images and features to be co-clustered. Co-clustering is performed in a way that maximises discrimination of object images from non-object images, thus emphasizing discriminative features. This provides a way of obtaining perceptual joint-clusters of object images and features. We tackle the problem by simultaneously boosting multiple strong classifiers which compete for images by their expertise. Each boosting classifier is an aggregation of weak-learners, i.e. simple visual features. The obtained classifiers are useful for object detection tasks which exhibit multimodalities, e.g. multi-category and multi-view object detection tasks. Experiments on a set of pedestrian images and a face data set demonstrate that the method yields intuitive image clusters with associated features and is much superior to conventional boosting classifiers in object detection tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual recognition problems often involve classification of myriads of pixels, across scales, to locate objects of interest in an image or to segment images according to object classes. The requirement for high speed and accuracy makes the problems very challenging and has motivated studies on efficient classification algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the multimodal problems by simultaneously clustering samples and boosting classifiers in Section 2. The method is extended into an online version for object tracking in Section 3. Section 4 presents a tree-structured classifier, called Super tree, to further speed up the classification time of a standard boosting classifier. The proposed methods are demonstrated for object detection, tracking and segmentation tasks. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2012 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.