3 resultados para OXIDATION REACTION
em Cambridge University Engineering Department Publications Database
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating CO2 from flue gases. Instead of air, it uses an oxygen-carrier, usually in the form of a metal oxide, to provide oxygen for combustion. When used for the combustion of gaseous fuels, such as natural gas, or synthesis gas from the gasification of coal, the technique gives a stream of CO2 which, on an industrial scale, would be sufficiently pure for geological sequestration. An important issue is the form of the metal oxide, since it must retain its reactivity through many cycles of complete reduction and oxidation. Here, we report on the rates of oxidation of one constituent of synthesis gas, H2, by co-precipitated mixtures of CuO+Al2O3 using a laboratory-scale fluidised bed. To minimise the influence of external mass transfer, and also of errors in the measurement of [H2], particles sized to 355-500μm were used at low [H2], with the temperature ranging from 450 to 900°C. Under such conditions, the reaction was slow enough for meaningful measurements of the intrinsic kinetics to be made. The reaction was found to be first order with respect to H2. Above ∼800°C, the reaction of CuO was fast and conformed to the shrinking core mechanism, proceeding via the intermediate, Cu2O, in: 2CuO+H2→Cu2O+H2O, ΔH1073 K0=- 116.8 kJ/mol; Cu2O+H2→2Cu+H2O, ΔH1073 K0-80.9 kJ/mol. After oxidation of the products Cu and Cu2O back to CuO, the kinetics in subsequent cycles of chemical looping oxidation of H2 could be approximated by those in the first. Interestingly, the carrier was found to react at temperatures as low as 300°C. The influence of the number of cycles of reduction and oxidation is explored. Comparisons are drawn with previous work using reduction by CO. Finally, these results indicate that the kinetics of reaction of the oxygen carrier with gasifier synthesis gases is very much faster than rates of gasification of the original fuel. © 2010 The Institution of Chemical Engineers.
Resumo:
New atmospheric pressure flow reactor data on the oxidation of formaldehyde in the temperature range 943-995 K and over equivalence ratios from 0.013 to 36.7 are reported and discussed. A detailed mechanism assembled from previously published results produced acceptable agreement with the experimental data for the fuel-lean conditions, but failed to predict results for oxidative pyrolysis. Analysis or the very fuel-lean conditions, but failed to modelling results are principally sensitive to CH2O+HO2→HCO+H2O2 (6) and H2O2 +M→OH+OH+M (33). Whereas the specific rate of each reaction cannot be independently determined, it is found that the product k33.k6 is a well defined function of temperature: (3.4±3.0).1028 exp(-(26,800±400)/T). Inadequacies in the mechanism which may be responsible for the disagreement under fuel-rich conditions are discussed. © 1991 Combustion Institute.
Resumo:
About 50-90 percent of the hydrocarbons that escape combustion during flame passage in spark-ignition engine operation are oxidized in the cylinder before leaving the system. The process involves the transport of unreacted fuel from cold walls towards the hotter burned gas regions and subsequent reaction. In order to understand controlling factors in the process, a transient one-dimensional reactive-diffusive model has been formulated for simulating the oxidation processes taking place in the reactive layer between hot burned gases and cold unreacted air/fuel mixture, with initial and boundary conditions provided by the emergence of hydrocarbons from the piston top land crevice. Energy and species conservation equations are solved for the entire process, using a detailed chemical kinetic mechanism for propane. Simulation results show that the post-flame oxidation process takes place within a reactive layer where intermediate hydrocarbon products are formed at temperatures above 1100-1200 K, followed by a carbon monoxide conversion region closer to the hot burned gases. Model results show that most of hydrocarbons leaving the crevice are completely oxidized inside the cylinder. The largest contribution of remaining hydrocarbons are those leaving the crevice at temperatures below 1400 K. The largest fraction of non-fuel (intermediate) hydrocarbons results from hydrocarbons leaving the crevice when core temperatures are around 1400 K Copyright © 1997 Society of Automotive Engineers, Inc.