1 resultado para OVER-EXPRESSION
em Cambridge University Engineering Department Publications Database
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Brock University, Canada (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (18)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (22)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (29)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (10)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (11)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (17)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (3)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (47)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (49)
- Queensland University of Technology - ePrints Archive (435)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (3)
- Université de Montréal, Canada (28)
- University of Michigan (1)
- University of Queensland eSpace - Australia (17)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper outlines necessary and sufficient conditions for network reconstruction of linear, time-invariant systems using data from either knock-out or over-expression experiments. These structural system perturbations, which are common in biological experiments, can be formulated as unknown system inputs, allowing the network topology and dynamics to be found. We assume that only partial state measurements are available and propose an algorithm that can reconstruct the network at the level of the measured states using either time-series or steady-state data. A simulated example illustrates how the algorithm successfully reconstructs a network from data. © 2013 EUCA.