54 resultados para OFF-CENTER DONOR
em Cambridge University Engineering Department Publications Database
Resumo:
Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.
Resumo:
Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6-10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5-1.8kV was realized at VGS = -5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design. © (2009) Trans Tech Publications, Switzerland.
Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers.
Resumo:
Macro-steatosis in deceased donor livers is increasingly prevalent and is associated with poor or non-function of the liver upon reperfusion. Current assessment of the extent of steatosis depends upon the macroscopic assessment of the liver by the surgeon and histological examination, if available. In this paper we demonstrate electrical and optical spectroscopy techniques which quantitatively characterize fatty infiltration in liver tissue. Optical spectroscopy showed a correlation coefficient of 0.85 in humans when referenced to clinical hematoxylin and eosin (H&E) sections in 20 human samples. With further development, an optical probe may provide a comprehensive measure of steatosis across the liver at the time of procurement.