96 resultados para Numerical power performance

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model to simulate an electroabsorption modulator in a dispersive communications system is described and confirmed experimentally for a 5Gbit/s 100km system. Optimisation of the device shows that transmission of 10Gbit/s over 100km is possible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

YBaCuO-coated conductors offer great potential in terms of performance and cost-saving for superconducting fault current limiter (SFCL). A resistive SFCL based on coated conductors can be made from several tapes connected in parallel or in series. Ideally, the current and voltage are shared uniformly by the tapes when quench occurs. However, due to the non-uniformity of property of the tapes and the relative positions of the tapes, the currents and the voltages of the tapes are different. In this paper, a numerical model is developed to investigate the current and voltage sharing problem for the resistive SFCL. This model is able to simulate the dynamic response of YBCO tapes in normal and quench conditions. Firstly, four tapes with different Jc 's and n values in E-J power law are connected in parallel to carry the fault current. The model demonstrates how the currents are distributed among the four tapes. These four tapes are then connected in series to withstand the line voltage. In this case, the model investigates the voltage sharing between the tapes. Several factors that would affect the process of quenches are discussed including the field dependency of Jc, the magnetic coupling between the tapes and the relative positions of the tapes. © 2010 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).