200 resultados para Nuclear fuel claddings.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing interest in using 242mAm as a nuclear fuel. The advantages of 242mAm as a nuclear fuel derive from the fact that 242mAm has the highest thermal fission cross section. The thermal capture cross section is relatively low and the number of neutrons per thermal fission is high. These nuclear properties make it possible to obtain nuclear criticality with ultra-thin fuel elements. The possibility of having ultra-thin fuel elements enables the use of these fission products directly, without the necessity of converting their energy to heat, as is done in conventional reactors. There are three options of using such highly energetic and highly ionized fission products. 1. Using the fission products themselves for ionic propulsion. 2. Using the fission products in an MHD generator, in order to obtain electricity directly. 3. Using the fission products to heat a gas up to a high temperature for propulsion purposes. In this work, we are not dealing with a specific reactor design, but only calculating the minimal fuel elements' thickness and the energy of the fission products emerging from these fuel elements. It was found that it is possible to design a nuclear reactor with a fuel element of less than 1 μm of 242mAm. In such a fuel element, 90% of the fission products' energy can escape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential for countries that currently have a nominal nuclear energy infrastructure to adopt thorium–uranium-fuelled nuclear energy systems, using a once-through ‘open’ nuclear fuel cycle, has been suggested by the International Atomic Energy Agency. This review paper highlights generation II, III and III+ nuclear energy technologies that could potentially adopt an open thorium–uranium fuel cycle and qualitatively highlights the main differences between the open thorium–uranium and open uranium fuel cycles.