58 resultados para Nuclear energy.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for countries that currently have a nominal nuclear energy infrastructure to adopt thorium–uranium-fuelled nuclear energy systems, using a once-through ‘open’ nuclear fuel cycle, has been suggested by the International Atomic Energy Agency. This review paper highlights generation II, III and III+ nuclear energy technologies that could potentially adopt an open thorium–uranium fuel cycle and qualitatively highlights the main differences between the open thorium–uranium and open uranium fuel cycles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of CO 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from ∼170000 years to ∼1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to ∼630 TWh/year (instead of only ∼530 TWh/year using only EPR) without consuming additional raw materials. © 2009 Barbara Vezzoni et al.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: