6 resultados para Not available

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A significant cost in obtaining acoustic training data is the generation of accurate transcriptions. For some sources close-caption data is available. This allows the use of lightly-supervised training techniques. However, for some sources and languages close-caption is not available. In these cases unsupervised training techniques must be used. This paper examines the use of unsupervised techniques for discriminative training. In unsupervised training automatic transcriptions from a recognition system are used for training. As these transcriptions may be errorful data selection may be useful. Two forms of selection are described, one to remove non-target language shows, the other to remove segments with low confidence. Experiments were carried out on a Mandarin transcriptions task. Two types of test data were considered, Broadcast News (BN) and Broadcast Conversations (BC). Results show that the gains from unsupervised discriminative training are highly dependent on the accuracy of the automatic transcriptions. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective data communications between the project site and decision making office can be critical for the success of a construction project. It allows convenient access to centrally stored information and allows centrally located decision makers to remotely monitor the site and collect data in real-time. However, high bandwidth, flexible data communication networks, such as wired local area networks, can often be time-consuming and costly to deploy for such purposes especially when project sites (dams, highways, etc.) are located in rural, undeveloped areas where networking infrastructure is not available. In such construction sites, wireless networking could reliably link the construction site and the decision-making office. This paper presents a case study on long-distance, site – office wireless data communications. The purpose was to investigate the capability of wireless technology in exchanging construction data in a fast and efficient manner and in allowing site personnel to interact and share knowledge and data with the office staff. This study took place at the University of Michigan’s campus where performance, reliability, and cost/benefit tests were performed. The indoor and outdoor tests performed demonstrated the suitability of this technology for office-site data communications and exposed the need for more research to further improve the reliability and data handling of this technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.