18 resultados para Nonlinear structures
em Cambridge University Engineering Department Publications Database
Resumo:
A method is presented to predict the transient response of a structure at the driving point following an impact or a shock loading. The displacement and the contact force are calculated solving the discrete convolution between the impulse response and the contact force itself, expressed in terms of a nonlinear Hertzian contact stiffness. Application of random point process theory allows the calculation of the impulse response function from knowledge of the modal density and the geometric characteristics of the structure only. The theory is applied to a wide range of structures and results are experimentally verified for the case of a rigid object hitting a beam, a plate, a thin and a thick cylinder and for the impact between two cylinders. The modal density of the flexural modes for a thick slender cylinder is derived analytically. Good agreement is found between experimental, simulated and published results, showing the reliability of the method for a wide range of situations including impacts and pyroshock applications. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.
Resumo:
The Hoberman 'switch-pitch ' ball is a transformable structure with a single folding and unfolding path. The underlying cubic structure has a novel mechanism that retains tetrahedral symmetry during folding. Here, we propose a generalized class of structures of a similar type that retain their full symmetry during folding. The key idea is that we require two orbits of nodes for the structure: within each orbit, any node can be copied to any other node by a symmetry operation. Each member is connected to two nodes, which may be in different orbits, by revolute joints. We will describe the symmetry analysis that reveals the symmetry of the internal mechanism modes for a switch-pitch structure. To follow the complete folding path of the structure, a nonlinear iterative predictor-corrector algorithm based on the Newton method is adopted. First, a simple tetrahedral example of the class of two-orbit structures is presented. Typical configurations along the folding path are shown. Larger members of the class of structures are also presented, all with cubic symmetry. These switch-pitch structures could have useful applications as deployable structures.