64 resultados para Non-homogeneous boundary conditions

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution of problems in unbounded physical space requires a truncation of the computational domain to a reasonable size. As a result, the conditions on the artificial boundaries are generally unknown. Assumptions like constant pressure or velocities are only valid in the far field and lead to spurious reflections if applied on the boundaries of the truncated domain. A number of attempts have been made over the past decades to design conditions that prevent such reflections. One approach is based on characteristics. The standard analysis assumes a spatially uniform mean flow field but this is often impractical. In the present paper we show how to extend the formulation to the more general case of a non-uniform mean velocity field. A number of test cases are provided and our results compare favourably with other boundary conditions. In principle the present approach can be extended to include non-uniformities in all variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel statistical models are proposed and developed in this paper for automated multiple-pitch estimation problems. Point estimates of the parameters of partial frequencies of a musical note are modeled as realizations from a non-homogeneous Poisson process defined on the frequency axis. When several notes are combined, the processes for the individual notes combine to give a new Poisson process whose likelihood is easy to compute. This model avoids the data-association step of linking the harmonics of each note with the corresponding partials and is ideal for efficient Bayesian inference of unknown multiple fundamental frequencies in a signal. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements. Copyright © 2013 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.