9 resultados para Newton family.

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the characterisation of a hydrogel forming family of benzene 1,3,5-tricarboxamide (BTA) aromatic carboxylic acid derivatives. The simple, easy to synthesise compounds presented here exhibit consistent gel formation at low concentrations through the use of a pH trigger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.