8 resultados para New methodology
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier-Stokes equations with k-ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.
Resumo:
Concurrent Engineering demands a new way of working and many organisations experience difficulty during implementation. The research described in this paper has the aim to develop a paper-based workbook style methodology that companies can use to increase the benefits generated by Concurrent Engineering, while reducing implementation costs, risk and time. The three-stage methodology provides guidance based on knowledge accumulated from implementation experience and best practitioners. It encourages companies to learn to manage their Concurrent Engineering implementation by taking actions which expose them to new and valuable experiences. This helps to continuously improve understanding of how to maximise the benefits from Concurrent Engineering. The methodology is particularly designed to cater for organisational and contextual uniqueness, as Concurrent Engineering implementations will vary from company to company. Using key actions which improve the Concurrent Engineering implementation process, individual companies can develop their own 'best practice' for product development. The methodology ensures that key implementation issues, which are primarily human and organisational, are addressed using simple but proven techniques. This paper describes the key issues that the majority of companies face when implementing Concurrent Engineering. The structure of the methodology is described to show how the issues are addressed and resolved. The key actions used to improve the Concurrent Engineering implementation process are explained and their inclusion in the implementation methodology described. Relevance to industry. Implementation of Concurrent Engineering concepts in manufacturing industry has not been a straightforward process. This paper describes a workbook-style tool that manufacturing companies can use to accelerate and improve their Concurrent Engineering implementation. © 1995.
Resumo:
Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
As operational impacts from buildings are reduced, embodied impacts are increasing. However, the latter are seldom calculated in the UK; when they are, they tend to be calculated after the building has been constructed, or are underestimated by considering only the initial materials stage. In 2010, the UK Government recommended that a standard methodology for calculating embodied impacts of buildings be developed for early stage design decisions. This was followed in 2011-12 by the publication of the European TC350 standards defining the 'cradle to grave' impact of buildings and products through a process Life Cycle Analysis. This paper describes a new whole life embodied carbon and energy of buildings (ECEB) tool, designed as a usable empirical-based approach for early stage design decisions for UK buildings. The tool complies where possible with the TC350 standards. Initial results for a simple masonry construction dwelling are given in terms of the percentage contribution of each life cycle stage. The main difficulty in obtaining these results is found to be the lack of data, and the paper suggests that the construction and manufacturing industries now have a responsibility to develop new data in order to support this task. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Resumo:
Established literature on new product development (NPD) management recognizes top management involvement (TMI) as one of the most critical success factors. With increasing pressure to sustain competitive advantage and growth, NPD activities remain the focus of close interest from top management in many organizations. TMI in the NPD domain is receiving increasing academic attention. Despite its criticality, there is no systematic review of the existing literature to inform and stimulate researchers in the field for further investigation. This paper introduces the current state of literature on TMI in NPD, synthesizes important findings, and identifies the gaps and deficiencies in this research stream. The contents of the selected articles, which investigated TMI in NPD, are analyzed based on the type of the study, level of analysis, research methodology, operationalization of TMI, and main findings. Additionally, other studies, which did not directly investigate TMI and support in NPD, but were sufficiently related, are briefly summarized. As a result of this detailed literature review, it can be stated that both exploratory and relational studies provide rich evidence on the critical role of top management in NPD. However, the identified gaps and deficiencies in this research stream call for a better theoretical understanding and well-defined constructs of TMI in the NPD domain for different levels of analysis for future studies.
Resumo:
This study proposes a new product development (NPD) model that aims to improve the effectiveness of innovative NPD in the medical devices. By adopting open innovation theory and applying an in-depth investigation methodology, this paper proposes a knowledge cluster that improves the integration of interdisciplinary human resources and enhances the acquirement of innovative technologies. A knowledge cluster approach helps gather, organise, synthesise, and accumulate knowledge in order to become the impetus for innovation. Although enterprises are no longer the principals of research and development, they should still be capable of integrating professional physicians, external groups, and individuals through the knowledge cluster platform. However, in order to support an effective NPD model, enterprises should provide adequate incentives and trust to external individuals or groups willing to contribute their expertise and knowledge to this knowledge cluster platform. Copyright © 2013 Inderscience Enterprises Ltd.