1 resultado para New intelectual left
em Cambridge University Engineering Department Publications Database
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (3)
- Center for Jewish History Digital Collections (41)
- Central European University - Research Support Scheme (1)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (7)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Harvard University (28)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (2)
- Memoria Académica - FaHCE, UNLP - Argentina (11)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- Queensland University of Technology - ePrints Archive (632)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (5)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (24)
- University of Queensland eSpace - Australia (6)
- University of Washington (2)
- USA Library of Congress (8)
Resumo:
This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.